- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Langharst, Dylan (2)
-
Roysdon, Michael (2)
-
Haddad, Julián (1)
-
Putterman, Eli (1)
-
Ye, Deping (1)
-
Zhao, Yiming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In 1970, Schneider introduced the$$m$$ th order difference body of a convex body, and also established the$$m$$ th-order Rogers–Shephard inequality. In this paper, we extend this idea to the projection body, centroid body, and radial mean bodies, as well as prove the associated inequalities (analogues of Zhang’s projection inequality, Petty’s projection inequality, the Busemann–Petty centroid inequality and Busemann’s random simplex inequality). We also establish a new proof of Schneider’s$$m$$ th-order Rogers–Shephard inequality. As an application, a$$m$$ th-order affine Sobolev inequality for functions of bounded variation is provided.more » « less
-
Langharst, Dylan; Roysdon, Michael; Zhao, Yiming (, The Journal of Geometric Analysis)Abstract An affine Pólya-Szegö principle for a family of affine energies, with equality condition characterization, is demonstrated. In particular, this recovers, as special cases, the$$L^p$$ affine Pólya-Szegö principles due to Cianchi, Lutwak, Yang and Zhang, and subsequently Haberl, Schuster and Xiao. Various applications of this new Pólya-Szegö principle are shown.more » « less
An official website of the United States government
